Dynamical Evolution of a Supermassive Binary in a Rotating Nucleus

Alexander Rasskazov & David Merritt, Rochester Institute of Technology

Supermassive binary's evolution

- 1) Unbound SMBHs, energy loss due to dynamical friction
- Bound SMBHs, energy loss due to 3-body interactions with stars
- 3) Very close SMBHs, energy loss due to GW emission
 4) Coalescence

Reorientation in a Non-rotating Nucleus

Small (<1°) diffusion in random direction

Reorientation in a Rotating Nucleus

A much stronger drift in a certain direction

Gualandris et al. (2012)

Fokker-Planck Equation

$$\frac{\partial F}{\partial t} = \frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left[\sin\theta \left(\frac{\left\langle \Delta\theta^2 \right\rangle}{2} \frac{\partial F}{\partial\theta} - \left\langle \Delta\theta \right\rangle F \right) \right]$$

 $F(\theta,t)$ – probability density distribution in θ $\langle \Delta \theta^2 \rangle \sim (\Delta \theta)^2 / \Delta t$ – "Random walks", "Diffusion" $\langle \Delta \theta \rangle \sim \Delta \theta / \Delta t$ – "Drift", "Friction"

Debye (1929)

Scattering Experiments

 $\langle \Delta \theta \rangle, \langle \Delta \theta^2 \rangle$ = average of $\delta \theta, \delta \theta^2$ over all interactions

Scattering Experiments

 $\langle \Delta \theta \rangle, \langle \Delta \theta^2 \rangle$ = average of $\delta \theta, \delta \theta^2$ over all interactions

$$\left\langle \Delta \theta^2 \right\rangle \sim \left\langle \Delta \theta \right\rangle \frac{m}{M_1 + M_2} \ll \left\langle \Delta \theta \right\rangle$$

 First-order effects are usually much more important

Example of a 3-body interaction

Diffusion coefficients: θ

Diffusion coefficients: θ

Orbital orientation evolution

- Diffusion in $\theta \approx diffusion$ in φ
- Drift in θ is negative (towards co-rotation)
- No drift in φ

Diffusion coefficients: *a*

 No difference from non-rotating case (for binaries hard enough)

Diffusion coefficients: e

Evolution of e and θ

Evolution of e and θ

Evolution of e and θ

Binary's argument of periapsis

$$\langle \Delta \omega \rangle \neq 0$$

Apsidal precession due to 3-body, even in non-rotating nuclei

Conclusions

- In rotating nuclei the orbital reorientation is
 - much stronger
 - $\theta \rightarrow 0$ rather than random walk
- No significant difference in hardening rate
- $e \rightarrow 0$ if co-rotating, $e \rightarrow 1$ if counter-rotating
- Possible applications:
 - Orbital plane \Rightarrow gas dynamics, spin of merger remnant (Lousto & Zlochower 2014)
 - Eccentricity \Rightarrow GW emission

Thank you!